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Abstract. In this paper we relate the minimal annulus of a planar convex body K

with its circumradius, obtaining all the upper and lower bounds, in terms of these

quantities, for some of the classic geometric measures associated with the set: the

diameter, the minimal width and the inradius. We prove the optimal inequalities for

each one of those problems, determining also its corresponding extremal sets.

1. Introduction

Let K ⊂ R2 be a convex body (compact convex set). Associated with K there are a
number of well-known functionals: the area A = A(K) and the perimeter p = p(K); the
diameter D = D(K) and the minimal width ω = ω(K) (minimum distance between two
parallel support lines of K); among all discs containing K there is exactly one (circum-
circle) with minimum radius, the circumradius RK of K; among all discs contained in K,
those whose radii have maximum value (incircles) provide the inradius r

K
of K.

Another interesting functional to be considered for a convex body K is the thickness of
its minimal annulus. The minimal annulus of K is the annulus (the closed set consisting
of the points lying between two concentric discs –concentric n-balls in Rn) with minimum
difference of radii that contains the boundary of K. Of course, the minimal annulus
is uniquely determined (Bonnesen [2] in R2, Kritikos [8] in R3 and Bárány [1] in higher
dimension). From now on, we shall denote by A(c, r, R) the minimal annulus of the planar
convex body K, where c, r and R represent, respectively, its center, radius of the inner
circle, and radius of the outer circle. This object and its properties were studied mainly
by Bonnesen for planar convex sets (see [2] and [3]). More recently, very interesting works
have appeared, in which, the minimal annulus has been studied in a more general setting:
for arbitrary dimension, replacing the ball by the boundary of a fixed smooth strictly
convex body, in Minkowski space... (see, for instance, [1, 9, 10, 11, 12, 15]).

Another interesting problem would be to look for inequalities involving the classical
functionals and the minimal annulus, finding the convex sets for which the equality sign
is attained: the extremal sets. In [2], [5] and [4], Bonnesen and Favard studied this type
of problems: in [2] and [5] the minimum and the maximum of the isoperimetric deficit
p2/(4π) − A, for given minimal annulus were obtained; in the third paper, the optimal
bounds of the area and the perimeter for fixed minimal annulus were determined.
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In [6], the bounds for the remaining measures (diameter, minimal width, circumradius
and inradius) in terms of the minimal annulus have been obtained. In [7], the problem
of optimizing the classical magnitudes when the minimal annulus and the inradius are
fixed is solved: let us note that if three measures are involved, the question becomes more
interesting when the inequality, named optimal, provides the maximum or minimum value
of a measure for each pair of possible values of the others.

In this paper, we obtain all the possible (and optimal) relations which state the max-
imum and minimum values of the diameter, the minimal width and the inradius of a
convex body, when its minimal annulus and its circumradius are given. We prove the
optimal inequalities for each one of these problems, determining also their corresponding
extremal sets. The inequalities that state the best bounds of the area and the perimeter
for fixed minimal annulus and circumradius were obtained in [6]. So, the results proved
here close the problem: all the possible cases involving minimal annulus, circumradius
and inradius are solved.

2. Some previous results

Before stating the main results of the paper, let us consider some properties of the
minimal annulus of a convex body K, which will play a crucial role in the proofs of the
results. Let us denote by cr and CR, respectively, the inner and the outer circles of the
minimal annulus A(c, r, R) of K. As usual, ∂K will denote the boundary of the set K.
Given two points P, Q ∈ R2, PQ will denote the straight line determined by them; PQ

the line segment joining them; and
︷ ︷
PQ any circular arc with P, Q as extreme points.

Besides, if P, Q lie on a circumference (with center c), we call central angle of P and Q

the angle ∠(PcQ) determined by them with respect to the center c.

The following well-known properties were studied by Bonnesen in [2]:

(P1) Each one of the circumferences ∂cr and ∂CR touches the boundary of K in, at
least, two points.

(P2) The sets ∂cr ∩ ∂K and ∂CR ∩ ∂K can not be separated.
(Two sets A and B can be separated if there exists a line ` such that A ⊂ `+ and
B ⊂ `−, where `+, `− represent the halfplanes determined by `).

(P3) The minimal annulus of a convex body K is uniquely determined.
(P4) The minimal annulus of a convex body K is the only annulus that contains ∂K

and verifies properties (P1) and (P2).

The following lemmas were obtained in [6], where we proved some properties of the
minimal annulus of a convex body K, as well as its relation with the circumradius of K.
They will be very useful in the proofs of the results.

Lemma 1. Let K be a convex body with minimal annulus A(c, r, R). The following
properties hold:

(a) There are points P, Q ∈ ∂CR∩∂K whose central angle α verifies α ≥2 arccos(r/R).

c

P Q

R

r

Figure 1. The limit case when the central angle of the
points P,Q ∈ ∂CR ∩ ∂K is α = 2 arccos(r/R).
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(b) K contains a cap-body: the convex hull of cr and two points of ∂CR ∩ ∂K, whose
minimal annulus is A(c, r, R) (a cap-body is the convex hull of a disc and countable
many points such that the segment joining any pair of them intersects the disc).

(c) K is contained in a circular slice of CR determined by two support lines to cr,
whose minimal annulus is A(c, r, R) (a circular slice is the part of a circle bounded
by two straight lines, whose intersection point, if it exists, is not interior to it).

The following lemma collects some properties relating the minimal annulus of a convex
body with its circumradius. From now on, we shall denote by CK the circumcircle of the
body K, and by x0 its circumcenter.

Lemma 2. Let K be a convex body with minimal annulus A(c, r, R), circumcircle CK

and circumradius RK . The following properties hold:

(i) RK ≤ R.
(ii) cr ⊂ K ⊂ CR ∩ CK .
(iii) Either CR ≡ CK , or ∂CK ∩ ∂CR has exactly two points, denoted by A and B.
(iv) If CK 6≡ CR, then the points {A,B} = ∂CK ∩ ∂CR determine a central angle α

such that α ≥ 2 arccos(r/R).
(v) The circular arc

︷ ︷
AB ⊂ ∂CK ⊂ CR can not be smaller than a semi-circumference.

(vi) The tangent line to cr, which is parallel and closer to the segment AB, intersects
∂CR in two points A′, B′, such that there exists, at least, one point P ∈ ∂K∩∂CR

lying on one of the arcs
︷ ︷
AA′,

︷ ︷
BB′. Without loss of generality, let us suppose that

P ∈
︷ ︷
AA′. Then, there exists another point Q 6= P lying on the arc

︷ ︷
PB, such that

the central angle determined by P and Q verifies α ≥ 2 arccos(r/R), see Figure 2.

0

c

A'

B'

x
A

B

P

Q

Figure 2. There are, at least, two points P, Q ∈ ∂K ∩ ∂CR.

(vii) K contains the 2-cap-body Kc = conv{cr, P, Q}, with P,Q obtained from (vi).
(viii) The 2-cap-body Kc of the above property (vii) determines on the boundary of cr

two circular arcs, each one having, at least, one point of ∂K.
(ix) K is contained in the intersection of CK with the circular slice of CR determined

by the support lines to cr through the points of ∂K ∩ ∂cr given by property (viii).

From now on, we will follow the notation of the above Lemma 2: A,B will denote the
intersection points of ∂CK and ∂CR; besides, we will denote by A′ and B′ the intersection
points of ∂CR with the parallel line to AB which is tangent to ∂cr (see Figure 2).

In the following sections, we are going to obtain all the possible (and optimal) relations
which state the maximum and minimum values of the diameter, the minimal width and
the inradius of a convex body, when its minimal annulus and its circumradius are given.
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3. Optimizing the diameter

In this section we state the relation between the minimal annulus, the circumradius
and the diameter of a convex body. More precisely, we obtain the best (upper and lower)
bounds for D, when the minimal annulus and the circumradius of the convex body are
fixed, determining also the extremal sets in each case. We start with the upper bounds.

Theorem 1. Let K be a convex body with minimal annulus A(c, r, R) and circumradius
RK . Then, its diameter D verifies D ≤ 2RK . The equality holds for any set containing
diametrically opposite points of ∂CK .

0

D

c

A=A' B=B'

x

Figure 3. A convex body with maximum diameter.

Proof. The inequality D ≤ 2RK always holds, independently of the minimal annulus.
Now, the set shown in Figure 3 has minimal annulus A(c, r, R), its circumradius is RK

and its diameter D = 2RK ; hence, there are sets for which the equality holds. ¤

From now on, we will denote by N and N ′ the north poles of the circumferences
∂CR and ∂CK , i.e., the intersection points of the straight line cx0 with ∂CR and ∂CK ,
respectively, which lie over the line segment AB.

Theorem 2. Let K be a convex body with minimal annulus A(c, r, R) and circumradius
RK . Then, its diameter D verifies:

(1) D ≥ R + r if R ≤ 5
3
r and RK ≤ R + r√

3
.

The equality holds, for instance, for the cap-body conv{cr, A,B,N ′} (see Figure 4).

(2) D ≥
√

3RK if





R ≤ 5
3
r and RK ≥ R + r√

3
, or (2.a)

5
3
r ≤ R ≤ 2r and RK ≥ 2√

3

√
R2 − r2. (2.b)

The equality holds in both cases, for instance, for the cap-body conv{cr, A, B, N ′}, when
4(ABN ′) is an equilateral triangle (see Figure 5).

(3) D ≥ 2
√

R2 − r2 if





5
3
r ≤ R ≤ 2r and RK ≤ 2√

3

√
R2 − r2, or (3.a)

2r ≤ R. (3.b)

In (3.a), equality holds, for instance, for the cap-body conv{cr, A, B,N ′}; in (3.b), for
the convex body conv{cr, A, B, Z}, where Z 6= A is the intersection point of ∂CK and the
circumference with center B and radius d(A, B) = 2

√
R2 − r2 (see Figure 6).
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D
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c

N'

x

Figure 4. Set with minimum diameter for R ≤ 5r/3, RK ≤ (R + r)/
√

3.
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(a)

c

N'
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D
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(b)

c

x

Figure 5. Sets with minimum diameter when (a) R ≤ 5r/3, RK ≥
(R + r)/

√
3, and (b) 5r/3 ≤ R ≤ 2r, RK ≥ 2

√
R2 − r2/

√
3.

D

A B

(a)

0

c

x

N'

D

0

A B

(b)

c

x

Z

Figure 6. Sets with minimum diameter when (a) 5r/3 ≤ R ≤ 2r, RK ≤
2
√

R2 − r2/
√

3, and (b) 2r ≤ R.

Let us note that the extremal set conv{cr, A, B, Z} for inequality (3.b) is not always a
cap-body, since the line segment AZ can have no intersection with cr (see Figure 6(b)).

Proof. We develop the proof in different steps: first, we see that all the inequalities hold;
then, we will show that they are optimal, determining the extremal sets.

(i) The inequalities. Let us suppose first that R ≤ 5r/3 and RK ≤ (R + r)/
√

3. In
[6, Proposition 3], the relation between the minimal annulus and the circumradius was
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stated. It was proved that when R ≤ 5r/3, it always holds D ≥ R + r, for any (possible)
value of RK . Besides, it is well-known that if K is a convex body with circumradius RK ,
then D ≥ √

3RK (see, for instance, [3, p. 84]). Hence, we can assure that

D ≥ max
{
R + r,

√
3RK

}
= R + r,

since, by hypothesis,
√

3RK ≤ R + r. It gives the lower bound in inequality (1). Now, if
R ≤ 5r/3 but RK ≥ (R + r)/

√
3, then D ≥ max

{
R + r,

√
3RK

}
=
√

3RK , which states
the bound in (2.a).

Let us suppose now that R ∈ [
5r/3, 2r

]
and RK ≥ 2

√
R2 − r2/

√
3. Since R ≥ 5r/3, it

is known (see [6, Proposition 3]) that D ≥ 2
√

R2 − r2. Hence,

D ≥ max
{

2
√

R2 − r2,
√

3RK

}
=
√

3RK ,

which proves the lower bound for (2.b). If, on the contrary, RK ≤ 2
√

R2 − r2/
√

3, then
D ≥ max

{
2
√

R2 − r2,
√

3RK

}
= 2

√
R2 − r2, inequality (3.a).

Finally, let us suppose that R ≥ 2r. Then, in particular, R ≥ 5r/3, which assures that
D ≥ 2

√
R2 − r2 (see again [6, Proposition 3]). Hence, D ≥ max

{
2
√

R2 − r2,
√

3RK

}
. If√

3RK ≥ 2
√

R2 − r2, using the trivial inequality R ≥ RK , we would get 3R2 ≥ 4(R2−r2),
or equivalently, R ≤ 2r, a contradiction. Therefore, the above maximum is 2

√
R2 − r2,

which shows inequality (3.b).

In order to conclude the proof of the theorem, we have to show that these bounds are
best possible; i.e., we have to determine the families of extremal sets for each of them.
First, we distinguish the particular case R = RK .

(ii) The particular case RK = R. It is an easy computation to check that inequalities
(1), (2) and (3) are reduced to

D ≥ R + r if R ≤ 1 +
√

3
2

r,(4)

D ≥
√

3R if
1 +

√
3

2
r ≤ R ≤ 2r,(5)

D ≥ 2
√

R2 − r2 if 2r ≤ R.(6)

There are many families of sets for which the equality holds in inequalities (4) and (5):
the well-known constant width sets verify D = R + r when R ≤ (

√
3 + 1)r/2, since

their circumcircle and incircle are always concentric, and hence determine their minimal
annulus; the so called Yamanouti sets verify D =

√
3R when (

√
3 + 1)r/2 ≤ R ≤ 2r,

again because the circumcircle and the incircle are concentric, and determine the minimal
annulus (a Yamanouti set is the convex hull of an equilateral triangle and three circular
arcs with center on each vertex of the triangle and radius not greater than its side length).

Now, let us suppose that R ≥ 2r. Let A ≡ A′ and B ≡ B′, and we consider the
circular sector ABM , where M is the intersection point of ∂CR and the circumference
with center B and radius d(A,B) = 2

√
R2 − r2 (see Figure 7).

Clearly, the straight lines AB and BM support cr, and the contact points can not be
separated from {A,B, M}; hence, the set has minimal annulus A(c, r, R). Its circumradius
is R, since A, B, M determine an acute-angled triangle. Finally, since R ≥ 2r, the point
M lies on the circular arc

︷ ︷
AN ⊂ ∂CR. Therefore, d(A,M) ≤ d(B, M) = d(A,B), which

assures that the diameter is D = d(B, M) = d(A,B) = 2
√

R2 − r2.
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A=A' B=B'

C
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c

M

N

Figure 7. The extremal set for RK = R and R ≥ 2r.

From now on, we will assume that RK < R, i.e., that CK 6≡ CR.

(iii.a) The extremal sets for inequality (1). Let R, r be given such that R ≤ 5r/3.
In this case, the distance d(A′, B′) = 2

√
R2 − r2 ≤ R+r. Let us take A ≡ A′ and B ≡ B′,

and let us consider the circles CA and CB , both with radius R + r, and centers A and
B, respectively. Then, ∂cr touches the circumferences ∂CA and ∂CB in the intersection
points MA,MB of the straight lines Ac and Bc with ∂cr, respectively (see Figure 8(a)).

If RK is such that d(A, N ′) = d(B,N ′) ≤ R + r (i.e., if N ′ lies inside the circle CA

–and CB), then L = conv{cr, A,B,N ′} is contained in the intersection of CA ∩ CB with
the closed half-plane determined by AB (see Figure 8). Since A ≡ A′ and B ≡ B′, then
x0 lies over the segment AB, which assures that 4(AN ′B) is an acute-angled triangle;
hence, L has circumradius RK . By property (P4), its minimal annulus is A(c, r, R).

R+r

(a)

CC

A

A

B

B

A=A' B=B'

0

c

M

x

N'

M

R+r

(b)

A

AB

B
C C

B=B'A=A'

0

c

M

x

N'

M

Figure 8. L has minimum diameter when RK ≤
√

(R + r)3/(8r).

Let us study the diameter of these figures. Since R ≤ 5r/3 < 2r, the line segments
N ′A and N ′B always intersect cr (the limit case corresponds to N ′ ≡ N and R = 2r);
therefore, MA, MB ∈ ∂L. It follows that D(L) = d(A,MA) = d(B, MB) = R + r,
since we have assumed that d(A,N ′) = d(B, N ′) ≤ R + r and R ≤ 5r/3 (which implies
d(A,B) = 2

√
R2 − r2 ≤ R + r). An easy computation shows that N ′ ∈ ∂CA ∩ ∂CB if

and only if RK =
√

(R + r)3/(8r). Thus, the above construction for the set L can be
developed only if RK ≤

√
(R + r)3/(8r) (see Figure 8).

However, from such a value of RK , d(A,N ′) = d(B, N ′) > R + r, and the above con-
struction does not work. So, let us suppose that R ≤ 5r/3 and RK >

√
(R + r)3/(8r),
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which implies d(A′, B′) = 2
√

R2 − r2 ≤ R + r < d(A′, N ′) = d(B′, N ′). Let us choose
the circumcenter x0 such that A ≡ A′ and B ≡ B′. Then, moving x0 on the line cx0

far away from c, we increase the distance d(A,B) (now A 6≡ A′, B 6≡ B′), decreasing
d(A,N ′) = d(B, N ′) at the same time. By continuity, there is a position of x0 for which
d(A,B) = d(A,N ′) = d(B,N ′); i.e., such that A,B, N ′ ∈ ∂CK form an equilateral trian-
gle. Then, d(A,B) = d(A, N ′) = d(B, N ′) =

√
3RK , and the set L = conv{cr, A, B, N ′}

has circumradius RK and minimal annulus A(c, r, R) (see Figure 9).

A B

CC D=R+r

0

AB

(a)

c

N'

x

A' B'

A B

CC

D=

0

AB

(b)

3RK

c

N'

x

A' B'

Figure 9. (a) D(L) = R + r, if R ≤ 5r/3 and
√

(R + r)3/(8r) ≤ RK ≤
(R + r)/

√
3; (b) D(L) =

√
3RK , if R ≤ 5r/3 and RK ≥ (R + r)/

√
3.

Clearly, D(L) ≥ d(A,B). Thus, two different cases appear:

• If N ′ ∈ CA ∩ CB (i.e., if L ⊂ CA ∩ CB), then R + r ≥ d(A,B) =
√

3RK (see
Figure 9(a)); so, D(L) = R + r.

• If N ′ 6∈ CA∩CB , then
√

3RK = d(A,B) ≥ R+ r, and the diameter is
√

3RK (see
Figure 9(b)).

In short, if
√

(R + r)3/(8r) < RK ≤ (R+r)/
√

3, the set L = conv{cr, A, B, N ′} shown
in Figure 9(a) is extremal for inequality (1); it concludes the proof of this inequality.

(iii.b) The extremal sets for inequality (2). The previous argument also shows
that if RK ≥ (R + r)/

√
3 (and R ≤ 5r/3), then the analogous set L, shown in Figure

9(b), is extremal for inequality (2.a).
So, let us suppose that 5r/3 ≤ R ≤ 2r and RK ≥ 2

√
R2 − r2/

√
3. The points A′, N ′, B′

determine an isosceles triangle, with side lengths

d(A′, B′) = 2
√

R2 − r2, d(A′, N ′) = d(B′, N ′) =
[
2RK

(
RK +

√
R2

K −R2 + r2
)]1/2

.

An easy computation shows that 4(A′N ′B′) is an equilateral triangle if and only if√
3RK = 2

√
R2 − r2, and also that d(A′, B′) ≤ d(A′, N ′) = d(B′, N ′) if and only if√

3RK ≥ 2
√

R2 − r2, our hypothesis. Hence, d(A′, B′) ≤ d(A′, N ′) = d(B′, N ′).
Let us choose again the circumcenter x0 such that A ≡ A′ and B ≡ B′. Then,

moving x0 on the line cx0 far away from c, we increase the distance d(A,B), decreasing
d(A,N ′) = d(B, N ′) at the same time. By continuity, there exists a position of x0

for which d(A, B) = d(A, N ′) = d(B, N ′); i.e., such that 4(AN ′B) is an equilateral
triangle. In this case, d(A,B) = d(A,N ′) = d(B,N ′) =

√
3RK , and the convex body



RELATING THE MINIMAL ANNULUS WITH THE CIRCUMRADIUS 9

L = conv{cr, A,B,N ′} has circumradius RK . Since R ≤ 2r, the sides of the triangle
4(AN ′B) intersect cr, which implies that the contact points of ∂L with ∂CR and ∂cr,
respectively, can not be separated: L has minimal annulus A(c, r, R) (see Figure 10).

0

A B

N'

D

c

A' B'

x

Figure 10. D(L) =
√

3RK , if 5r/3 ≤ R ≤ 2r and RK ≥ 2
√

R2 − r2/
√

3.

The diameter of L is, either the diameter of4(AN ′B), i.e.,
√

3RK , or the distance from
any vertex to a support line of the opposite circular arc of ∂cr, i.e., R+r. Since 5r/3 ≤ R,
then 2

√
R2 − r2 ≥ R + r, and from RK ≥ 2

√
R2 − r2/

√
3, we obtain

√
3RK ≥ R + r;

hence D(L) =
√

3RK (see Figure 10). It concludes the proof of inequality (2.b).

(iii.c) The extremal sets for inequality (3). Let us suppose that 5r/3 ≤ R ≤ 2r

and RK ≤ 2
√

R2 − r2/
√

3. We take A ≡ A′ and B ≡ B′, and let CA, CB be the circles
with radius 2

√
R2 − r2 = d(A,B) and centers A and B, respectively.

(a)

C CBA

A=A' B=B'

D

0

c

x

N

E
N'

(b)

C CAB
N'=E

0

A=A' B=B'

D

c
x

N

Figure 11. (a) conv{cr, A, B, N ′} has minimum diameter if 5r/3 ≤ R ≤
2r and RK ≤ 2

√
R2 − r2/

√
3. (b) The limit case RK = 2

√
R2 − r2/

√
3.

An easy computation shows that d(A,N) =
√

2R(R + r); using that R ≤ 2r, we have
d(A,N) = d(B, N) ≥ d(A,B) = 2

√
R2 − r2. Hence, ∂CA ∩ ∂CB gives a point E ∈ CR.

Let us note that for a value of RK such that the point N ′ verifies d(N ′, c) ≤ d(E, c), the
set L = conv{cr, A, B, N ′} is the required solution (see Figure 11): its circumradius is
RK because A,N ′, B do not lie on the same semi-circumference; the minimal annulus is
A(c, r, R), because ∂4(AN ′B) ∩ cr 6= ∅; finally, since L ⊂ CA ∩ CB , D(L) = 2

√
R2 − r2.

It is easy to see that d(N ′, c) = d(E, c), i.e., N ′ ≡ E, only if RK = 2
√

R2 − r2/
√

3; so,
d(N ′, c) ≤ d(E, c) when RK ≤ 2

√
R2 − r2/

√
3, our hypothesis. It shows inequality (3.a).
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Finally, let us suppose that R ≥ 2r, for any (possible) value of RK . Let us take A ≡ A′

and B ≡ B′. From R ≥ 2r, it follows that d(A,N) = d(B, N) ≤ d(A,B) = 2
√

R2 − r2.
Hence, ∂CA and ∂CB intersect in the exterior of CR (see Figure 12), and ∂CB ∩ ∂CR

gives a point M ∈
︷ ︷
AN , such that the line segment MB supports cr. On the other hand,

there is a point Z ∈ ∂CB ∩ ∂CK lying on
︷ ︷
AM ⊂ ∂CB (if AB is a diameter-chord of CK ,

then Z ≡ A, as shown in Figure 12(b)).

A=A' B=B'

CCA
B

D

(a)

0

c

x

Z

N

M

N'

0

A=A'=Z B=B'

CCA B

D

(b)

c

x

M

N'

N

Figure 12. L = conv{cr, A,B,Z} has minimum diameter if R ≥ 2r.

The convex body L = conv{cr, A, B,Z} provides the required solution: it has cir-
cumradius RK (A,B, Z do not lie on the same semi-circumference) and minimal annulus
A(c, r, R). Finally, since L is contained in the circular sector ABM , and contains the
center B and two points A,Z of the circular arc, its diameter is D(L) = 2

√
R2 − r2 (see

Figure 12). It concludes the proof of inequality (3.b), and the theorem.
Let us note that, in the last case, the set L can not be usual conv{cr, A, B, N ′}, because

for certain values of R, r,RK , the line segments AN ′ and BN ′ do not touch ∂cr (see Figure
12(b)); then, A(c, r, R) can not be the minimal annulus of the set. ¤

4. Optimizing the minimal width and the inradius

In this section we state the relation between the minimal annulus, the circumradius
and both, the minimal width and the inradius of a convex body K. More precisely, we
are going to obtain the best bounds (upper and lower bounds) for ω and rK , when the
minimal annulus and the circumradius of the convex body are fixed, determining also
the extremal sets in each case. The results for both cases, the minimal width and the
inradius, can be proved in a similar way. So, we will state them together.

Theorem 3. Let K be a convex body with minimal annulus A(c, r, R) and circumradius
RK . Then, its minimal width ω and its inradius r

K
verify

ω ≥ 2r and rK ≥ r.

The equality holds for any set containing diametrically opposite points of ∂cr.

Proof. In [6] it was proved that the above inequalities always hold, independently of the
value of RK . Therefore, it suffices to show that, for any possible value of RK , there exists
a convex body with minimal annulus A(c, r, R) and, for each case, minimal width ω = 2r

or inradius r
K

= r. For instance, the set in Figure 13 verifies the required conditions. ¤
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0

0

r
K

c=y

A=A' B=B'

x

Figure 13. A set with minimal width ω = 2r and inradius r
K

= r.

Before stating the opposite bound, let us construct the following set: for A(c, r, R)
and RK given, let us consider the circle CK with radius RK such that the straight line
AB supports cr. Let ` denote the tangent line to ∂cr, passing through the point A (see
Figure 14). We define the asymmetric circular wedge, denoted by K∠, as the intersection
of CK with the circular slice of CR determined by the straight lines AB and `.

l

c

A B

Figure 14. Asymmetric circular wedge K∠.

Theorem 4. Let K be a convex body with minimal annulus A(c, r, R) and circumradius
RK . Then, its minimal width ω verifies:

ω ≤ RK+
√

R2
K −R2 + r2

if





R ≤ 2r, or (7.a)

2r ≤ R ≤ r
√

2(2 +
√

2) and RK ≤ R4

4r(R2 − 2r2)
. (7.b)

(7)

ω ≤4r(R2 − r2)
R4

(
R2 − 2r2 + 2r

√
R2

K −R2 + r2

)

if





2r ≤ R ≤ r
√

2(2 +
√

2) and RK ≥ R4

4r(R2 − 2r2)
, or (8.a)

R ≥ r
√

2(2 +
√

2). (8.b)

(8)

And its inradius r
K

verifies

(9) rK ≤ 2r

(
1− r

RK −
√

R2
K −R2 + r2

R2 − r2

)
.

The equality holds, in all cases, for the asymmetric circular wedge K∠ (see Figure 15).
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c

A B

0

0

r K

c

x

y

Figure 15. K∠ has maximum minimal width and inradius.

Proof. Let us note that, if RK = R, then inequalities (7), (8) and (9) can be written as

ω ≤
{

R + r if R ≤ 2r,

ω ≤ 4r

R2
(R2 − r2) if R ≥ 2r

and rK ≤ 2rR

R + r
,

respectively. In [6, Propositions 2 and 7], it was proved that these relations hold for the
minimal width and the inradius when the minimal annulus is prescribed. Thus, from now
on we can suppose that RK < R, and hence, that CK 6≡ CR.

Property (ix) of Lemma 2 assures that K is contained in the intersection of CK with
the circular slice of CR determined by the support lines to cr in two suitable points of
∂cr∩∂K, which are separated by the line segment AB; we denote by K1 this kind of sets.
Besides, by property (vi) of this lemma, we know that at least one of the above support
lines intersects ∂CR in a point P , lying either on the circular arc

︷ ︷
AA′, or on

︷ ︷
BB′; we can

suppose, for instance, that P ∈
︷ ︷
AA′ (see Figure 16). Therefore, ω ≤ ω(K1) and rK ≤ rK1

,
and the problem is reduced to consider this particular family of sets.

0

c

x

A B

A'

B'

S

T

P

Q

Figure 16. Reducing the problem to the sets K1.

Following the notation of Figure 16, we represent by S, T ∈ ∂CK and Q ∈ ∂CR the
intersection points (besides P ), of ∂CK and ∂CR with the straight lines determining K1.

For each fixed segment PQ, both the minimal width and the inradius of K1 are min-
imum (respectively, 2r and r) when ST is parallel to PQ. If we move ST continuously
on ∂cr in the anti-counter-clockwise, we obtain all the possible sets K1. Let us note that
the width in the orthogonal direction to PQ is given, depending on the relation between
r, R and RK , by the distance, to PQ, either from the point T , or from the tangent line
to ∂CK , which is parallel to PQ. And this one is the direction in which the minimal
width of K1 is attained. Of course, the greater the angle determined by PQ and ST , the
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greater the minimal width and the inradius of K1; therefore, the set K1 with maximum
width and inradius is obtained when the points P and S coincide (see Figure 17).

If we move ST in the counter-clockwise, we can conclude analogously that the set has
maximum minimal width and inradius when T ≡ Q. However, this figure has both, less
minimal width and less inradius than the previous one (when P ≡ S). In fact, let us note
that the point P lies over the line segment A′B′, and consequently, Q lies below it; then,
d(Q, x0) ≤ d(P, x0). Besides, the angles ](PQS) = ](TPQ) when T ≡ Q or P ≡ S,
because P, Q ∈ ∂CR and the lines determining these angles support cr. Therefore, the
length of the arc

︷ ︷
AS, when T ≡ Q, is less than the length of

︷ ︷
TB, if P ≡ S; it implies

that both the minimal width and the inradius are maximized when P ≡ S.

0

c

x

A B

A'

B'

T

P=S

Q

0

0

r
K

c

x
A B

A'

B'
P=S

Q

T

y

Figure 17. Reducing the problem to the sets K2.

Let K2 be this last set (see Figure 17). Then, ω ≤ ω(K1) ≤ ω(K2) and rK ≤ rK1
≤ rK2

.
Since P ∈ ∂CR and the lines PT , PQ support cr, then the angle ](TPQ) is always the
same for any point P . Besides, the greater the length of the arc

︷ ︷
TB, the greater

(1) the distance between PQ and its parallel line, tangent to
︷ ︷
TB, and so the minimal

width,
(2) the radius of the incircle.

For fixed P , continuously moving the circumcenter x0 on the straight line x0c towards c,
then the part of CK contained in CR is bigger; hence, the length of the arc

︷ ︷
TB increases,

and hence the minimal width and the inradius. We can do this movement till P ≡ A.
Thus, it suffices to consider the sets K2 such that the lines determining them intersect
on A (see Figure 18, left).

Finally, it is easy to see that, since the angle in A is always the same wherever A

is placed, both the minimal width and the inradius will be maximal when A ≡ A′ (see
Figure 18), this is, when the set is an asymmetric circular wedge K∠.

A tedious calculation shows that

r
K∠ = 2r

(
1− r

RK −
√

R2
K −R2 + r2

R2 − r2

)
,

which states inequality (9).
We just have to compute the minimal width of K∠, which depends on the relation

between R, r and RK . Again, N ′ will denote the intersection point of the straight line
cx0 and ∂CK , as shown in Figure 18.
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0

c

x

P=S=A B

A'

B'

T

Q

ω

P=A=S=A'

0

c

x

Q=B=B'

T

N'

0

0

r
K

c

x

P=S=A=A' Q=B=B'

T

y

Figure 18. K∠ has maximal inradius and minimal width.

If R ≥ r
√

2(2 +
√

2), then it is easy to see that, for any possible value of RK , the point

T lies on the circular arc
︷ ︷
N ′B ⊂ ∂CK (see Figure 19, left). Hence, the minimal width is

the distance from T to the line segment AB:

ω(K2) =
4r(R2 − r2)

R4

(
R2 − 2r2 + 2r

√
R2

K −R2 + r2

)
.

Besides, if R = r
√

2(2 +
√

2) and RK =
√

R2 − r2, the circumcenter x0 lies on the line
segment AB, and then, T ≡ N ′ (see Figure 19, middle).

ω

0

c

P=S=A=A' Q=B=B'

x

TN'

ω

0

c

x

A

B

N=T'

R K 0

c

A
B

x

T N'

ω

Figure 19. Different positions for the point T ∈ ∂CK .

In the case 2r ≤ R ≤ r
√

2(2 +
√

2), T ≡ N ′ only if RK = R4/(4r(R2 − 2r2)). Hence,

if RK ≥ R4/(4r(R2 − 2r2)), then T lies again on the circular arc
︷ ︷
N ′B; on the contrary,

if RK ≤ R4/(4r(R2 − 2r2)), then T ∈
︷ ︷
AN ′, and the minimal width is the distance from

N ′ to AB (see Figure 19, right):

ω(K2) = RK +
√

R2
K −R2 + r2.

Finally, if R ≤ 2r, the point T always lies on the arc
︷ ︷
AN ′, for any possible value of the

circumradius, and hence, the maximum minimal width is the distance between N ′ and
the segment AB (see Figure 18, middle). ¤
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[8] Kritikos, N.: Über konvexe Flächen und einschließende Kugeln, Math. Ann. 96 (1) (1927),

583–586.

[9] Peri, C.: On the minimal convex shell of a convex body, Canad. Math. Bull. 36 (4) (1993),

466–472.

[10] Peri, C.: Minimal shells containing a convex surface in Minkowski space, Manuscripta Math.

90 (3) (1996), 333–342.

[11] Peri, C., Vassallo, S.: Minimal properties for convex annuli of plane convex curves, Arch.

Math. (Basel) 64 (3) (1995), 254–263.

[12] Peri, C., Zucco, A.: On the minimal convex annulus of a planar convex body, Monatsh. Math.

114 (2) (1992), 125–133.
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